Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(3): 1926-1934, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38193748

RESUMO

Dielectric capacitors are highly desired in modern electronic devices and power systems to store and recycle electric energy. However, achieving simultaneous high energy density and efficiency remains a challenge. Here, guided by theoretical and phase-field simulations, we are able to achieve a superior comprehensive property of ultrahigh efficiency of 90-94% and high energy density of 85-90 J cm-3 remarkably in strontium titanate (SrTiO3), a linear dielectric of a simple chemical composition, by manipulating local symmetry breaking through introducing Ti/O defects. Atomic-scale characterizations confirm that these Ti/O defects lead to local symmetry breaking and local lattice strains, thus leading to the formation of the isolated ultrafine polar nanoclusters with varying sizes from 2 to 8 nm. These nanoclusters account for both considerable dielectric polarization and negligible polarization hysteresis. The present study opens a new realm of designing high-performance dielectric capacitors utilizing a large family of readily available linear dielectrics with very simple chemistry.

2.
Nat Commun ; 14(1): 7382, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968326

RESUMO

Engineering lattice defects have emerged as a promising approach to effectively modulate the functionality of devices. Particularly, antiphase boundaries (APBs) as planar defects have been considered major obstacles to optimizing the ionic conductivity of mixed ionic-electronic conductors (MIECs) in solid oxide fuel applications. Here our study identifies topotactically transformable APBs (tt-APBs) at the atomic level and demonstrates that they exhibit higher ionic conductivity at elevated temperatures as compared to perfect domains. In-situ observation at the atomic scale tracks dynamic oxygen migration across these tt-APBs, where the abundant interstitial sites between tetrahedrons facilitate the ionic migration. Furthermore, annealing in an oxidized atmosphere can lead to the formation of interstitial oxygen at these APBs. These pieces of evidence clearly clarify that the tt-APBs can contribute to oxygen conductivity as anion diffusion channels, while the topotactically non-transformable APBs cannot. The topotactic transformability opens the way of defect engineering strategies for improving ionic transportation in MIECs.

4.
J Am Chem Soc ; 145(25): 13623-13631, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37327186

RESUMO

Owing to their wide application in oxide-based electrochemical and energy devices, ion conductors have attracted considerable attention. However, the ionic conductivity of the developed systems is still too low to satisfy the low-temperature application. In this study, by developing the emergent interphase strain engineering method, we achieve a colossal ionic conductivity in SrZrO3-xMgO nanocomposite films, which is over one order of magnitude higher than that of the currently widely used yttria-stabilized zirconia below 673 K. Atomic-scale electron microscopy studies ascribe this superior ionic conductivity to the periodically well-aligned SrZrO3 and MgO nanopillars that feature coherent interfaces. Wherein, a tensile strain as large as +1.7% is introduced into SrZrO3, expanding the c-lattice and distorting the oxygen octahedra to decrease the oxygen migration energy. Combining with theoretical assessments, we clarify the strain-dependent oxygen migration path and energy and unravel the mechanisms for strain-tuned ionic conductivity. This study provides a new scope for the property improvement of wide-range ion conductors by strain engineering.

5.
Adv Mater ; 34(36): e2204743, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35854476

RESUMO

Ultrahigh-precision manufacturing and detection have highlighted the importance of investigating electrostrictive materials with a weak stimulated extrinsic electric field and a simultaneous large hysteresis-free strain. In this study, a new type of electrostrictive relaxor ferroelectric is designed by constructing a complex inhomogeneous local structure to realize excellent electrostrictive properties. A remarkably large electrostrictive coefficient, M33 (8 × 10-16 m2 V-2 ) is achieved. Through a combined atomic-scale scanning transmission electron microscopy and advanced in situ high-energy synchrotron X-ray diffraction analysis, it is observed that such superior electrostrictive properties can be ascribed to a special domain structure that consists of endotaxial nanoprecipitations embedded in a polar matrix at the phase boundary of the rhombohedral/tetragonal/cubic phases. The matrix contributes to the high strain response under the weak extrinsic electric field because of the highly flexible polarization and randomly dispersed endotaxial nanoprecipitations with a nonpolar central region, which provide a strong restoring force that reduces the strain hysteresis. The approach developed in this study is widely applicable to numerous relaxor ferroelectrics, as well as other dielectrics, for further enhancing their electrical properties, such as electrostriction and energy-storage capacity.

6.
ACS Appl Mater Interfaces ; 14(11): 13528-13538, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35262350

RESUMO

Ternary/polynary perovskite solid solutions based on binary systems are well-known for their high piezoelectric performance. In this work, a series of Pb(Ni1/3Nb2/3)O3-Pb(Sc1/2Nb1/2)O3-PbTiO3 compositions with the particularly high piezoelectric coefficient of d33* > 1000 pm/V and d33 > 700 pC/N have been developed. The optimal performance was achieved in the 0.52PNN-0.14PSN-0.34PT composition (d33* = 1120 pm/V, d33 = 804 pC/N, and Tm = 109 °C). The high piezoelectric performance of this system is reported and is superior to those of most lead-based ternary/polynary ceramics. By a combination of in situ high-energy synchrotron diffraction with transmission electron microscopy (TEM), the origin of the high piezoelectric response has been unambiguously revealed. Upon application of an external electric field, synchrotron diffraction profiles show no splitting but prominent shifting, indicating that the large intrinsic lattice strain arising from the reduced crystal anisotropy and facilitated polarization variation is associated with the high piezoelectric response. Furthermore, microscopic studies by TEM highlight a heterogeneous ferroelectric domain configuration generated by a small local structural distortion, which is also beneficial for the high piezoelectric performance in the proposed ternary piezoelectric systems. The design process of ternary perovskite solid solutions with a wide morphotropic phase boundary region and small structural distortion may be enlightening for the exploration of other high-performance polynary piezoelectrics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...